11月3日消息,谷歌研究院与 DeepMind 合作开发了最新的天气模型 MetNet-3,该模型以之前的 MetNet 和 MetNet-2 为基础,能够提前 24 小时,能够对全球天气情况进行高解析度预测,包括降水、表面温度、风速、风向和体感温度。
谷歌提到,MetNet-3 模型已经在移动平台的“谷歌手机软件”天气预报中实装。
MetNet-3 模型可创建“平滑且高精度”的预测,空间解析度可达 1 至 4 公里,并以 2 分钟为分析区间,经实验证明,MetNet-3 的预测能力超越传统物理天气预报模型,例如传统物理基础模型“NWP(Numerical Weather Prediction)”及“快速刷新模型(HRRR)”均被 MetNet-3 超过。
MetNet-3 在预测天气上,与其他建立在传统方法之上的机器学习方法不同,关键点在于 MetNet-3 直接通过大气观测资料进行训练和评估。研究人员提到,直接观测的优点在于数据密度及解析度更高。此外,除了继承先前 MetNet 模型的数据之外,MetNet-3 还新增学习来自气象站的气温、风力测量资料,以尝试对所有位置进行全方位天气预测。
MetNet-3 的主要价值在于,能够即时以机器学习技术准确地预测天气,并在谷歌的产品上提供天气预报服务。该模型根据不断搜集的最新数据,持续地创建完整精确地预报,研究人员提到,这和传统的物理推理系统不同,更能够满足天气预报的独特需求。